Polaris Help Center
Help Center HomeResearch Process White PapersResearch Methods White PapersThree-Minute TutorialsStat Calculator – Margin of ErrorStat Calculator – DifferencesStat Calculator – Sample SizeChi Square TestHelpful WebinarsQuestionnaire ExamplesOther Marketing Research ResourcesMarketing Research Glossary
Polaris’ Help Center:How to Use the Chi-Square Test for Survey Data Analysis
Polaris’ Help Center:How to Use the Chi-Square Test for Survey Data Analysis
Note: This section is fairly technical in nature and
we do not provide a Chi-Square Calculator. The Chi-Square test is used when cross-tabulating survey results and all popular cross-tab software packages include this as a test option. Please use our handy Chi-Square Significance Reference Table for help interpreting your cross tabulation results.
Chi-Square Reference Table
df = (columns-1) x (rows-1)
Significance Level df 90% 95% 99% 1 2.7055 3.8415 6.6349 2 4.6052 5.9915 9.2104 3 6.2514 7.8147 11.3449 4 7.7794 9.4877 13.2767 5 9.2363 11.0705 15.0863 6 10.6446 12.5916 16.8119 7 12.017 14.0671 18.4753 8 13.3616 15.5073 20.0902 9 14.6837 16.919 21.666 10 15.9872 18.307 23.2093 11 17.275 19.6752 24.725 12 18.5493 21.0261 26.217 13 19.8119 22.362 27.6882 14 21.0641 23.6848 29.1412 15 22.3071 24.9958 30.578 16 23.5418 26.2962 31.9999 17 24.769 27.5871 33.4087 18 25.9894 28.8693 34.8052 19 27.2036 30.1435 36.1908 20 28.412 31.4104 37.5663 21 29.6151 32.6706 38.9322 22 30.8133 33.9245 40.2894 23 32.0069 35.1725 41.6383 24 33.1962 36.415 42.9798 25 34.3816 37.6525 44.314 26 35.5632 38.8851 45.6416 27 36.7412 40.1133 46.9628 28 37.9159 41.3372 48.2782 29 39.0875 42.5569 49.5878 30 40.256 43.773 50.8922 31 41.4217 44.9853 52.1914 32 42.5847 46.1942 53.4857 33 43.7452 47.3999 54.7754 34 44.9032 48.6024 56.0609 35 46.0588 49.8018 57.342 36 47.2122 50.9985 58.6192 37 48.3634 52.1923 59.8926 38 49.5126 53.3835 61.162 39 50.6598 54.5722 62.4281 40 51.805 55.7585 63.6908 41 52.9485 56.9424 64.95 42 54.0902 58.124 66.2063 43 55.2302 59.3035 67.4593 44 56.3685 60.4809 68.7096 45 57.5053 61.6562 69.9569 46 58.6405 62.8296 71.2015 47 59.7743 64.0011 72.4432 48 60.9066 65.1708 73.6826 49 62.0375 66.3387 74.9194 50 63.1671 67.5048 76.1538 51 64.2954 68.6693 77.386 52 65.4224 69.8322 78.6156 53 66.5482 70.9934 79.8434 54 67.6728 72.1532 81.0688 55 68.7962 73.3115 82.292 56 69.9185 74.4683 83.5136 57 71.0397 75.6237 84.7327 58 72.1598 76.7778 85.9501 59 73.2789 77.9305 87.1658 60 74.397 79.082 88.3794 61 75.5141 80.2321 89.5912 62 76.6302 81.381 90.8015 63 77.7454 82.5287 92.0099 64 78.8597 83.6752 93.2167 65 79.973 84.8206 94.422 66 81.0855 85.9649 95.6256 67 82.1971 87.108 96.8277 68 83.3079 88.2502 98.0283 69 84.4179 89.3912 99.2274 70 85.527 90.5313 100.4251 71 86.6354 91.6703 101.6214 72 87.7431 92.8083 102.8163 73 88.8499 93.9453 104.0098 74 89.9561 95.0815 105.2019 75 91.0615 96.2167 106.3929 76 92.1662 97.351 107.5824 77 93.2702 98.4844 108.7709 78 94.3735 99.617 109.9582 79 95.4762 100.7486 111.144 80 96.5782 101.8795 112.3288 81 97.6796 103.0095 113.5123 82 98.7803 104.1387 114.6948 83 99.8805 105.2672 115.8762 84 100.98 106.3949 117.0566 85 102.0789 107.5217 118.2356 86 103.1773 108.6479 119.4137 87 104.275 109.7733 120.5909 88 105.3723 110.898 121.7672 89 106.4689 112.022 122.9422 90 107.565 113.1452 124.1162 91 108.6606 114.2679 125.2893 92 109.7556 115.3898 126.4616 93 110.8501 116.511 127.633 94 111.9442 117.6317 128.8032 95 113.0377 118.7516 129.9725 96 114.1307 119.8709 131.1411 97 115.2232 120.9897 132.3089 98 116.3153 122.1077 133.4756 99 117.4069 123.2252 134.6415 100 118.498 124.3421 135.8069
The Chi-Square is a statistical test used to examine
differences with categorical variables. The Chi-Square test
is used in two circumstances: 1) for estimating how closely
an observed distribution matches an expected distribution
(a “goodness-of-fit” test), or 2) for estimating whether two
random variables are independent.
For survey results, the Chi-Square statistical test comes in
most handy when analyzing cross tabulations of the survey
data. Since crosstabs show the frequency and percentage
of responses to questions by different segments or categories of respondents (gender, income, profession, etc.), the Chi-Square test can tell us whether there is a statistical difference between the segments/categories in how they answered the question.
Note #1: The Chi-Square statistic only tests whether two
variables are independent in a “yes” or “no” format. It does
not indicate the degree of difference between the respondent categories in terms of which is greater or less.
Note #2: The Chi-Square test requires that you use
numerical values (frequency counts), not percentages or
ratios.
Chi-Square Calculation Formula
chi-sq = sum[(Ei,j – Ai,j) / Ei,j ]
where Ei,j represents the expected value for cell i, j
E i,j = (Ti x Tj) / N Ti = sum of values in columni, Tj = sum of values in row j, N = total of values in table
A i,j represents the actual value for cell i, j
For significance, test chi-sq against critical values for the Chi Square Distribution
df = (columns-1) x (rows-1)